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ABSTRACT

In this paper, we describe a nature-inspired optimization algorithm
based on bee foraging behavior. This algorithm combines the high
performance of bee path-integration navigation with ant-like stig-
mergic behavior in the form of landmarks. More precisely, each
individual landmark can be created at any walkable state in the
environment and contains a collection of direction markers with
which visiting agents can find their way in an unknown environ-
ment. A landmark can either be represented by an agent or any
other information distributing object (e.g., a RFID). Essentially, we
implement ant recruitment behavior based on pheromone. How-
ever, instead of using attracting or repelling pheromone in every
state of the environment, we only update directional information at
key locations in the environment. The resulting algorithm, which
we call Stigmergic Landmark Foraging (SLF), proves to be very
efficient in terms of building and adapting solutions.

Categories and Subject Descriptors

Swarm Intelligence [Multi-Agent Systems]: Landmark navigation

Keywords

Swarm Intelligence, Multi-agent Systems, Landmark navigation

1. INTRODUCTION
In previous work we presented Bee System as an alternative to

Ant Colony Optimization (ACO) in foraging domains [17]. Forag-
ing is an interesting problem in the domain of Multi-Agent Systems
(MAS). The problem entails that a group of agents has to gather
objects in a complicated, potentially dynamical environment. Ants
deposit pheromone on the path they take during travel. Using this
trail, they are able to navigate towards their nest or food. Ants em-
ploy an indirect recruitment strategy by accumulating pheromone
trails. When a trail is strong enough, other ants are attracted to it
(i.e., recruitment) and will follow this trail towards a destination.
This is known as an autocatalitic process. More precisely, the more
ants follow a trail, the more that trail becomes attractive for being
followed. Short paths will eventually be preferred. Since ants fol-
low pheromone trails towards their destination, it may be clear that
the ant’s navigation strategy is also guided by pheromone [11].

In contrast, non-pheromone-based algorithms are inspired by the
behavior of (mainly) bees and do not use pheromones to navigate
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through unfamiliar worlds. Instead, for navigation, they use a strat-
egy named Path Integration (PI). Bees are able to compute their
present location from their past trajectory continuously and, as a
consequence, can return to their starting point by choosing the di-
rect route rather than retracing their outbound trajectory [15, 21].
For recruitment, bees employ a direct strategy by dancing in the
nest. Their dance communicates distance and direction towards a
destination [27].

In previous research, we introduced a foraging algorithm in-
spired by bees and compared it to an Ant System [17]. Our compar-
ison showed that the bee-inspired, non-pheromone-based algorithm
clearly outperformed the ant-inspired, pheromone-based algorithm
in relatively unobstructed environments; more precisely, the bee al-
gorithm was able to collect all items present in the environment in
about three times less time steps than the ant algorithm [17]. How-
ever, we also found that in more constrained and/or dynamical en-
vironments, such as the Deneubourg Bridge [10], the bee algorithm
tends to get stuck behind obstacles [17]. Unlike the ant algorithm,
the bee algorithm is only able to learn from any mistakes at one
location (i.e., the hive) and as such is less adaptive.

To account for the adaptability problem we introduced inhibition
pheromones, resulting in the algorithm ‘Bee System with inhibi-
tion Pheromones’ (BSP) [16]. More precisely, agents can place
pheromones in cells that can be considered undesirable, for in-
stance cells that lead to a dead end. In other words, this algorithm
is a hybrid, integrating some features of Ant Systems into a bee-
inspired algorithm. The major advantage of this algorithm is that
its performance is equal to our initial Bee System algorithm while
being at least as adaptive as the ant-inspired algorithm. However,
the major downside of this approach is that inhibition pheromones
need to be simulated somehow, which is not a trivial issue, espe-
cially in embodied systems.

Therefore, in [18], we explored the possibility of using land-
marks instead of pheromones. More precisely, we extended our
previously introduced Bee System [17] with landmark navigation
with which agents can learn landmarks that together function as
routes. Each landmark represents a segment in the total route [6]
and indicates what follow-up action to take to get to the next seg-
ment. Moreover, each agent is able to contribute to the success
of a landmark route. The more agents follow a route, the more
that route becomes attractive for being followed. Summarizing,
[18] presents a stigmergic landmark algorithm. With respect to
pheromone-based algorithms, such a solution is easier to realize
in the physical world since landmarks are either already physically
available, or could easily be placed, in the environment by means
of, for example, RFID tags. In comparison to BSP, the algorithm is
at least as efficient when applied to static environments. However,
due to its higher computation time, the algorithm has longer run
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times.
In this paper, we present Stigmergic Landmark Foraging (SLF)

which extends the algorithm from [18] so that it can be applied
in dynamic environments. The extension addresses the route-loop
problem that may emerge in dynamic environments. More pre-
cisely, due to landmark decay, a route may be broken. When an
agent relinks the route it may be attached to a previous visited
landmark which may result in a route loop. Moreover, we test a
new recruitment heuristic in order to further improve efficiency. To
show the performance of SLF, we compare it to BSP in a set of ba-
sic static experiments. Furthermore, to illustrate the performance
difference with the new heuristic, we apply SLF to a set of environ-
ments with multiple, different quality goals. In such experiments,
quality may represent goal priority. A high-priority goal should
have a higher preference than a low-priority goal. Finally, we show
the algorithm’s adaptability capabilities in a dynamic environment
and its robustness to goal-quality assessment errors.

The remainder of this paper is structured as follows. First, we
present an overview of related work in the area of landmark nav-
igation. Next, we present our new landmark algorithm and show
its effectiveness in a set of experiments. Finally, we conclude and
look at future research.

2. RELATED WORK
In this paper, we focus on landmark navigation in large groups.

More precisely, we focus on swarm communities like bee colonies.
Individuals of such colonies are limited in their means to navigate
over typically unknown environments due to limitations in, for ex-
ample, brain capacity. However, where the individual fails, the
swarm as a whole is able to perform complex tasks such as find-
ing the shortest route to a food item.

In bee communities, landmark navigation is used as an additional
navigation strategy next to Path Integration [7]. It actually serves as
a strategy to make PI navigation more accurate [2, 8]. Each mem-
ber of the colony is able to segment the traveled path and measure
its traveled distance by recognizing landmarks and acting on them
once they are recognized. The distance that spans between two con-
secutive landmarks is represented by a so-called local vector. Each
local vector is attached to the landmark that is seen at the beginning
of the segment, such that when a landmark is recognized, the bee
recalls the associated local vector that guides it to the next land-
mark. Local vector memories can be linked together in a sequence
so that, even in the absence of the triggering landmark, memory
recall occurs [5, 6, 9, 19]. Each bee furthermore keeps an up-to-
date global vector which spans between the start location and the
destination [5]. However, when bees move over familiar territory,
local vectors activated in a sequential fashion take precedence over
the global path integration vector. The global vector thus serves as
a backup strategy [4].

Bees basically classify landmarks into two groups, (i) global
landmarks and (ii) local landmarks. First, global landmarks are
used to guide the bee to the rough area of the goal and can be used
over large spatial distances. This panorama (i.e., the global land-
marks) determines which actions of movement are recalled [9, 26].
Second, local landmarks are close to the goal (or the hive) and are
therefore a natural choice for pinpointing the goals position [3, 9,
26]. However, local landmarks are not as reliable as global land-
marks. Local landmarks (e.g., a leaf) tend to change over time
whereas global landmarks (e.g., a mountain range) tend to be sta-
ble. Research has shown that in absence of known global land-
marks, bees are still able to navigate towards the goal albeit not very
accurately. Local landmarks seem to be used as a secondary mech-
anism of navigation. The local landmarks are not attended when a

familiar route and known global landmarks are present. Thus, bees
preferably attend to global landmarks [26].

In recent years, researchers have started to use landmark nav-
igation behavior to create robots which can navigate in unknown
environments autonomously. In [1], a single robot is presented
which builds an internal map of the environment in order to nav-
igate through it. Although the robot’s control system is designed
as a MAS, it is solely used to determine which control system (for
example, the pilot system) of the robot get access to the robot. By
using a bidding mechanism the most urgent control system gets
access. In [12, 13], a single robot is able to navigate through an en-
vironment based on image matching. The robot is allowed to take
snapshots (i.e., images) while recording positional information. By
mathematically comparing two snapshots, the robot is able to cal-
culate an average displacement vector with which it can move to-
wards a goal. Together these vectors make a displacement field
with which a robot can move from any point in the environment
towards its destination. [20] also demonstrates an image matching
approach to landmark navigation and shows its functionality in a
robot with analog electronic hardware. [14] presents a single robot
that uses the Perception-Action architecture which is a neural com-
putation architecture proposed to solve a wide variety of control
problems requiring learning capabilities. By using this architec-
ture, the robot is able to learn how to reach any goal from any other
landmark by moving around the goal. [22] presents a robot with a
self-organizing mechanism to build a representation of the environ-
ment based on landmark recognition. The robot first starts with a
map-building effort and once the map is complete the map interpre-
tation starts which consists of map planning and execution. Note
that all these researches are based on single robots. Furthermore,
most researches are based on offline learning, i.e., a map has to be
learnt before it can be used.

3. THE SLF ALGORITHM
In this section we will describe the algorithm developed. First,

for the sake of clarity, we give a short overview of the original bee-
inspired algorithm from [17]. Next, we describe the novel SLF al-
gorithm. In the following, when we speak of ‘the hive’ we indicate
the starting position of the agent. ‘The goal’ indicates a destination
with a collection of items present.

3.1 The original bee-inspired algorithm
The bee algorithm implements both recruitment and navigation

behavior. Recruitment behavior is implemented in analogy with bi-
ological bees’ dance behavior [16, 17, 23]. Agents (artificial bees)
share information on previous search experience (i.e., the direc-
tion and distance toward a certain goal) only when they are in the
hive. Agents in the hive can then decide whether to exploit previous
search experience obtained by other agents in the hive, or to exploit
their own search experience, if available. Biological bees use a
(still) unknown decision mechanism to decide whether to exploit
another bee’s experience. In our bee-inspired algorithm, the deci-
sion is based on distance assessment; an agent will exploit another
agent’s experience if this experience indicates goals at a shorter
distance from the hive than the goals currently known by the agent.
The navigation behavior used in our bee-inspired algorithm either
exploits previous search experience (of the agent itself or of another
agent in the hive) or lets the agents explore the world using an ex-
ploration strategy called a Lévy flight [25]. Exploiting previous
search experience is guided by a PI vector that agents either have
constructed themselves or have adopted from another agent in the
hive. In the remainder of this paper we refer to a goal-directed PI
vector as a Goal Vector (GV), a hive-directed PI vector is referred
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to as a Homing Vector (HV).
The general structure of our bee-inspired algorithm is quite sim-

ilar to that of algorithms in ACO [11]. It implements both recruit-
ment and navigation behavior and consists of three functions.

(i) ManageBeesActivity() handles agents’ activity based on
their internal state. Each agent is in one of six internal states. In
each state a specific behavior is performed.
First, agent state ‘Explorer’ indicates the agent is exploring the en-
vironment for goals and performing Lévy flights to optimally cover
the search space [24]. During exploration, the agent continuously
updates its HV.
Second, agent state ‘Carrier’ indicates the agent found a goal and
is returning an item from the goal to the hive. The actions an agent
takes during the return are guided by the HV. During the return,
the agent continuously updates its HV in order to have an accurate
vector of guidance. The GV is set to the HV + 180◦ the moment
the agent arrives at the goal.
Third, ‘Dancer’ indicates that an agent arrived at the hive with di-
rectional knowledge of a goal (i.e., the GV). In order to recruit other
colony members for this goal, the agent starts a virtual dance which
other colony members can observe. The dance communicates the
directional information directly to the observers.
Fourth, agent state ‘Rester’ indicates the agent remains in the hive
and is resting. It either did not find a goal by exploration or it did
find a goal and recently stopped dancing for it.
Fifth, agent state ‘Observer’ indicates an agent is looking for dancers
to observe. Whenever it finds one, it determines whether the danced
‘advertisement’ is of high enough quality to adopt.
Sixth, agent state ‘Recruit’ indicates an agent adopted the direc-
tional information from a dancer and is traveling to the goal. Its
actions are guided by the GV which is continuously updated dur-
ing the travel to the goal. During exploitation phase, the HV is also
continuously updated.

(ii) CalculateV ectors() is used to compute the PI vectors for
each agent, i.e., the HV and possibly GV indicating the goal. A
PI vector essentially consists of two values, one indicating the di-
rection and the other indicating the distance (i.e., the magnitude).
A PI vector is always calculated with respect to the previous one.
In order to calculate the new distance, we use the cosine rule and
rewrite it to Equation 1a.

b =
√

a2 + c2 − 2ac × cosβ (1a)

α = arccos

(
a2 − b2 − c2

−2bc

)
(1b)

In Equation 1a, a represents the distance traveled since the last
turn was made, c the old homing distance, and b the new homing
distance. β is the angle turned with respect to the old angle. Using
Equation 1a we can now calculate α (i.e., the angle used for ad-
justing the old angle), once again by rewriting the cosine rule, see
Equation 1b. Values obtained by Equation 1a and Equation 1b are
used to construct the new PI vector.

(iii) DaemonActions() can be used to implement centralized
actions which cannot be performed by single agents, such as col-
lection of global information which can be used to decide whether
it is useful to let an agent dance. In the original bee-inspired algo-
rithm, DaemonActions() is not used.

3.2 The SLF algorithm
In order to improve the original bee-inspired algorithm, we ex-

tend it by adding landmark navigation. Essentially, this means that
agents are able to create or represent sub-hives in the environment.
In this research, agents create sub-hives in the environment and do

Figure 1: Basic example of a landmark network. ‘H’ and ‘G’

respectively represent the hive and goal. The grey squares rep-

resent the landmarks. The arrows represent a landmark route.

Figure 2: Flow between each of the internal states. The num-

bers which can be found at various edges represent the equa-

tions numbered equally in the paper.

not represent the landmarks by themselves. Each sub-hive contains
directional information, in the form of HV’s and/or GV’s, to other
sub-hives (or the goal) and form together a network of directed vec-
tors from hive to goal and/or goal to hive. Figure 1 shows a basic
example of such a sub-hive network. Because of the resemblance
to biological landmarks, in the remainder of this paper we refer to
these sub-hives as landmarks. Each landmark is essentially a state
(e.g. grid block, node) in which it is profitable to have additional
(heuristic) information in order to guide the search to a better solu-
tion.

With respect to the original bee-inspired algorithm each agent’s
memory is slightly increased with three fields.
First, the temporary vector (TV) represents the vector from the last
known landmark (or hive) to the current landmark (or goal). On ar-
rival at a landmark (or goal), the TV is reset. The TV is essentially
the same as a local vector in biological landmark navigation [5].
Second, an agent is able to remember which route it is actually fol-
lowing. Each landmark can thus represent multiple routes towards
the goal (and/or back to the hive).
Third, an agent is able to remember the quality of a found goal.

The general algorithm structure is based on the original bee-
inspired algorithm and thus consists of three functions, i.e.,
(i) ManageBeeBehavior(), (ii) CalculateV ectors(), and (iii)
DeamonActions(). With respect to these functions the first and
last one have a different implementation than in the original bee-
inspired algorithm.

a) The behavior of agents in ManageBeeBehavior() is deter-
mined by the six possible internal states and is inspired by agent
behavior as described in [23]. In Figure 2, we show the flow be-
tween each of the internal states.
First, agent state ‘Explorer’ indicates the agent is exploring the en-
vironment for goals and performing Lévy flights to optimally cover
the search space [24]. During exploration, the agent continuously
updates its HV. While covering the search space, the agent is able to
detect key locations (i.e., landmarks) in the environment which are
then used to store the agents’ TV. The landmark detection condi-
tions can be found in Figures 3(a), 3(b), 3(c) and 3(d). Essentially,
a key location is found on a corner of an obstacle, an open corner,
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(a) Obstacle (b) Open (c) T-corridor (d) Corridor

Figure 3: Situations in which a key location (i.e., landmark) is

detected. ‘L’ represents the landmark location. Grey squares

indicate possible obstacles, black squares indicate necessary

obstacles. Constellations may be rotated and/or mirrored. In

none of the cases a hive or goal may be present.

SL 2 ALR Explorer Consequence

False False Create new landmark with new agent landmark route
False True Create new landmark with known agent landmark route
True False Not possible
True True IF LHV does not exist: continue exploration without creating

new landmarks, ELSE IF LGV exists: probability to become
recruit.

Table 1: Explorer Landmark creation conditions. SL = Is State

a Landmark?, ALR = Is Agent Landmark Route Known?

a corridor in a T-shape, and in a corner of a corridor. These condi-
tions are sufficient for contructing an efficient solution to the forag-
ing problem. Connections between such landmarks ensure an effi-
cient path around obstacles. Note however that landmark detection
conditions may differ according to the problem domain. For exam-
ple, in network routing a landmark may be detected if a node has a
certain queue, bandwidth, and/or congestion. During exploration,
the TV is stored in the landmark as a Landmark Homing Vector
(LHV), indicating the next location to move to in order to arrive
home. Moreover, each LHV is linked to a particular route. Each
explorer is thus able to create a distinct route towards its home.1 If
an agent arrives in a landmark, it first checks whether the route it
is on, is already known inside the landmark. In Table 1 this is in-
dicated in the field ALR. If an agent’s TV is obstructed within the
agents view range, it is not allowed to create any more landmarks
during its exploration phase. Explorer Landmark creation condi-
tions can be found in Table 1. Obviously, these conditions are only
valid if the TV is not directly (i.e., within the agent’s view range)
obstructed.
Second, agent state ‘Carrier’ indicates the agent found a goal and
is returning an item from the goal to the hive. As a carrier arrives
at a goal it determines the quality of the site according to Equation
2. Let the quality assessment Q of agent i for goal j be

Qij = GQj + εi
n, (2)

where GQj ε [0, 1] is the quality of goal j (set by the user) and
εi
n the goal-quality-assessment error of agent i due to noise. Goal

quality may represent for example goal priority. The actions an
agent takes during the return are guided by the LHV of the land-
marks the agent visits while following a particular route back home.
Each visited landmark is also used to create/reinforce the Landmark
Goal Vector (LGV). On arrival at a landmark, the agent stores its
TV in the LGV and then resets the TV. If a carrier is not able to fol-
low its route back (i.e., the LHV is blocked or the indicated follow-
up landmark is non-existent) it starts exploring for landmarks. If it
finds one it tries to adopt another landmark-route home. The car-
rier is not allowed to create any LGV’s if it altered its route. Carrier
landmark creation conditions can be found in Table 2. To prevent
excessive carrier exploration efforts, a carrier agent has a certain
1Explorers are not allowed to extend existing routes. Extending by
explorers may result in route looping due to landmark decay.

SL 2 ALR Explorer Consequence

False False Create new landmark with new agent landmark route
False True Create new landmark with known agent landmark route
True False Not possible
True True IF LGV does not exist: set LGV with known agent route,

ELSE IF Agent Goal Quality > Landmark Goal Quality then
overwrite LGV

Table 2: Carrier Landmark creation conditions. SL = Is State

a Landmark?, ALR = Is Agent Landmark Route Known?

lifespan (in time steps). In this research, carriers are sure to stay
alive for the time it takes to, at least, travel back and forth along
the longest route ((h × w)2 time steps, where h is the height of
the environment and w is the width of the environment in cells).
After this period, the agent has an increasing probability of death
in which case it looses its resource and is ‘reborn’ inside the hive.
The probability of death increases linearly with the number of vis-
ited cells after its minimal lifespan.
Third, ‘Dancer’ indicates that an agent arrived at the hive with di-
rectional knowledge of a landmark or possibly the goal directly.
This knowledge is represented in the TV and the landmark route
the agent followed. In order to recruit other colony members for
its goal, the agent starts a virtual dance which other colony mem-
bers can observe. The dance communicates the directional infor-
mation and route directly to the observers. High-quality goals are
preferred over low-quality goals. Moreover, short-distanced goals
are preferred over long-distanced goals. To normalize a dancer’s
dance, we use a Quality Cumulative (QC) which sums all distinct
goal qualities, see Equation 3.

QC =

Bd∑
i=1

Qij (3)

In Equation 3, Bd represents the number of dancers in the hive
and

∑Bd
i=1 Qij only counts distinct qualities. Duplicate qualities

are discarded. The resulting dance strength is determined according
to Equation 4,

DSi =

⎧⎨
⎩

max{γ(
Qij

QC+Qij
), 0} : init.

DSi − εd : Qij > εt

0 : Qij ≤ εt

, (4)

where DSi indicates the dance strength for dancer i, Qij is a
stochastic value for the quality of goal j as observed by agent i.
QC represents a Quality Cumulative which scales the observed
goal quality and, in this research, indicates the total quality of all
goals that are danced for in the hive, see Equation 3. γ > 0 is
a parameter which represents the proportionality between the goal
quality and the initial dance strength. For example, setting γ = 300
will result in a dance strength of 300 for a goal with quality 1. εd

sets a value for the dance strength decay. Extending the previous
example, setting εd = 15 would result in dancing for the specific
goal for 300/15 = 20 time steps. εt sets a threshold on the goal
quality before there will be any dancing for the goal. At the end of
the virtual dance, a dancer has to decide whether it rests or recruits
itself for its own goal. The self-recruiting probability (i.e., Pr) can
be set by the user.
Fourth, agent state ‘Rester’ indicates the agent remains in the hive
and is resting. It either did not find a goal by exploration or it did
find a goal and recently stopped dancing for it. A resting agent ei-
ther becomes an observer or an explorer. The probability to become
an explorer is given by Equation 5,
2A state is a landmark whenever it is detected as a possible land-
mark AND it has a agent route linked to it.



Nyree Lemmens, Karl Tuyls • Stigmergic Landmark Foraging

501

Pe = e

(
− 1

2
DSt

2

σ2

)
, (5)

where DSt indicates the total dance strength of all dancing agents,
and σ is a scaling parameter and essentially determines the ten-
dency of an agent to explore. Notice that if DSt = 0, there is no
dancing so that Pe = 1 and all the observer bees will explore (e.g.,
initially DSt = 0 so all observer bees will choose to explore). If
DSt is low, the observer bees are less likely to find a dancer and
thus will not likely get recruited to a goal. They will, in a sense, be
‘recruited to explore’ by the lack of the presence of any dance. As
DSt increases, the agents become less likely to explore and, as dis-
cussed below, will be more likely to find a dancer and get recruited
to a goal. In the latter case the agents look for a virtual dance and
determine whether the danced ‘advertisement’ is of high enough
quality to adopt, see Equation 6,

Pr =
DSi∑Bd

i=1 DSi

, (6)

where DSi represents the dance strength by agent i, Bd indicates
the total number of dancing agents. This way, agents that dance
‘stronger’ recruit more agents for their goal. Thus, high quality
goals are going to be preferred.
Fifth, agent state ‘Observer’ indicates an agent is looking for dancers
to observe. Before the agents starts to observe, it first determines
whether it is (still) profitable to observe. This behavior is also cap-
tured in Equation 5.
Sixth, agent state ‘Recruit’ indicates an agent adopted the direc-
tional information from a dancer and is traveling to the goal using
the landmarks’ LGV on its route. The recruit essentially validates
each LHV and LGV. More precisely, if a recruit is able to arrive at
an indicated landmark then obviously the LGV is still usable. Like-
wise, the agent can compare its TV with the LHV. If the vectors are
equal then obviously, the route back home is also still valid. On
validation, the recruit reinforces the segments of the routes. Even-
tually, strong routes will emerge and these routes will prevail over
the weak routes.

b) SLF is able to handle dynamic environments. To accomplish
this, established landmarks somehow have to disappear if they are
not used anymore. Therefore in this research DaemonActions()
is used and takes care of the landmark decay. Each landmark’s
dance strength decays with a factor εd at each time step.

4. EXPERIMENTAL SET-UP
In this section, we will discuss our experimental set-up, i.e., (i)

the type of measurements, (ii) the environments to experiment on
and their characteristics, and (iii) the settings of the simulator.
First, in this research we would like to discover how SLF performs
with respect to (a) efficiency, (b) scalability, and (c) adaptability.
These three characteristics are most important in MAS’. A MAS
typically has to deal with a large number of agents and it is used to
solve (increasingly) large and complex problems which may be dy-
namic of nature [11]. Efficiency relates to the learning performance
(i.e., knowledge acquisition and knowledge usage). If a MAS is
efficient it will solve its task as fast as possible while using as few
resources as possible. In this research, we measure efficiency by
the average number of time steps the algorithm uses to complete
the task. Moreover, by measuring the average computation time
per time step, we also monitor time-related resources. Scalability
is the ability to cope with an increasing problem size and/or de-
creasing resource availability. A MAS’ scalability is thus partly re-
lated to its efficiency. Obviously, an efficient MAS is more scalable

than an inefficient MAS. To measure scalability in this research, we
perform the experiments with different (increasing) colony sizes in
the MAS. Moreover, we experiment on two different-sized environ-
ments. In these experiments, a MAS that shows a small decrease
in efficiency in an increasingly complex problem is more scalable
than a MAS that shows a large decrease in efficiency. Adaptabil-
ity is the ability to adapt learned behavior. An adaptive MAS is
able to learn alternative behaviors when the initial learned behav-
ior is not profitable anymore. Learned behavior may become un-
profitable due to environmental changes and/or quality assessment
errors by agents. Thus, adaptability relates to robustness. Further-
more, relearned behavior should also be efficient. If a MAS in a
dynamic environment is inefficient it apparently learned mediocre
or bad performing behavior and as a consequence is not adaptive.
In this research, adaptability is measured according to Equation 7,

A =

∑m
i=1(1 − (tm

n −tm
c )

tt
)

m
(7)

where A ε [0, 1] is a measure for average adaptability, m is the
number of environmental changes, tm

n is the time step in which a
new strongest route surpasses the strongest route from before the
environmental change m, tm

c is the time step of the environmental
change m, and tt is the total number of time steps. A high value for
A indicates high average adaptability, a low value indicates low av-
erage adaptability. Route strength is determined according to Equa-
tion 8,

Rj
s = Bj

r + Bj
c (8)

where Rj
s indicates the route strength of route j, Bj

r represents
the number of recruits for route j, and Bj

c represents the number of
carriers for route j. The highest Rj

s represents the strongest route.
Summarizing, we keep a count on the number of recruits and

carriers for each route. The route with the highest count is the
strongest route. Whenever an environmental change is performed,
we store its corresponding time step (i.e., tm

c ) and the current strongest
route. Finally, we store the time step at which a different route sur-
passes the strongest route from before the environmental change.
To test adaptability, we experiment with dynamic environments
in which obstacles block learned foraging routes towards a goal.
We assume that the strongest route is blocked at an environmental
change. Moreover, agents may not have perfect knowledge and can
make quality assessment errors. An efficient and scalable MAS ap-
plied in a dynamic environment in which agent quality assessments
are not perfect is clearly adaptive.
Second, in order to perform the measurements, we apply SLF in
a number of problem environments. Each environment consists of
a number of square cells. Each cell has maximally four neighbors
and may contain a hive, goal, or obstacle. In the latter case, agents
are not able to traverse these cells. Each environment contains one
hive (i.e., start location) and one goal (i.e., a collection of items).
Each agent’s assignment is to create a route from the hive to the
goal, collect a goal-item and return it to the hive. We construct
three sets of experiments, (i) BSP Comparison Set (Figure 4), (ii)
Heuristic Comparison Set (Figure 5), and (iii) Robustness Com-
parison Set (Figure 6). We deliberately use relatively simple (yet
increasingly complex) environments which may benefit the under-
standing of the approach and the results.
EXPERIMENT SET 1: BSP Comparison. In order to get an
indication about the performance of SLF we compare its perfor-
mance to the performance of BSP [16] when applied to the same
experiment set. The set consists of two experiments. Experiment
1 and 2 are basic experiments without any obstacles between the
hive and the goal. They consists of 400 (20x20) and 900 (30x30)
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Figure 4: BSP Comparison Set. ‘H’ and ‘G’ represent the hive

and goal respectively.

Figure 5: Heuristic Comparison Set. ‘H’ represents the hive.

‘I’ always represents the short-distance goal. ‘II’ always repre-

sents the long-distance goal. A dark-colored goal indicates low

quality whereas a bright-colored goal indicates high quality.

cells respectively to test for scalability with respect to an increas-
ing problem size. Both experiments contain a hive in the lower-left
corner and a goal in the upper-right corner. Obviously, these ex-
periments can be done in all alternative rotations and with different
‘constellations’ of hive and goal. To test for agent scalability, we
perform these experiments with an increasing colony size (i.e., 25
and 50 agents). Each goal contains 300 items.
EXPERIMENT SET 2: Heuristic Comparison. In order to test
the recruitment heuristic, Set 2 consists of 3 experiments in which
each environment has two paths towards two goals. We test two
heuristics. First, a basic heuristic based on goal quality [23]. Es-
sentially, recruitment is being guided only by the goal quality. In-
directly goal quality also represents the distance between hive and
goal of the route, i.e., a short-distance goal will receive more virtual
dancing than a long-distance goal due to the fact that dancing for
short-distance goals will occur more frequently. Thus the recruit-
ment probability will be higher for short-distance goals. However,
such a heuristic may not be a guarantee that the most profitable
route is used. A high quality, long-distance goal may be more prof-
itable than a low-quality, short-distance goal. Second, to ensure
such profitable paths, we include a QC in the heuristic. Recruit-
ment will now be guided by a ‘scaled’ goal quality. E.g., a low-
quality goal ‘advertised’ among ‘advertised’ high-quality goals will
have an even lower recruitment probability than with the standard
heuristic. Eventually, the most profitable path will be preferred. To
show effectiveness of each heuristic, we vary the quality of goals
and the distance of each goal to the hive. In Experiment 4, the qual-
ity of the short-distance goal and the long-distance goal are equal.
In Experiment 5, there is a high-quality, short-distance goal and a
low-quality, long-distance goal. Experiment 6 presents these goals
in the opposite order. Both low-quality and high-quality goals con-
sist of 600 items to clearly show convergence to one of the two
paths.

Figure 6: Robustness Comparison Set. ‘H’ and ‘G’ represent

the hive and goal respectively.

EXPERIMENT SET 3: Adaptability Comparison. As men-
tioned earlier, adaptability is related to robustness. SLF should
be robust (and thus adaptive) to environmental changes and goal-
quality-assessment errors. Experiment 6 consists of three cases
which together create a dynamic environment. Case 1 shows an
environment in which there is a short and a long path to the goal.
Moreover, it shows an obstacle construction which the agents have
to learn to travel around. Case 2 blocks one path (i.e., the short
path). Case 3 opens up one path (i.e., the short path) and blocks
the other (i.e., the long path). Thus, agents first need to learn a
route from hive to goal during Case 1. At any moment in time,
their environment changes (into Case 2) and they have to relearn
how to cope with this environment, i.e., forget the short route and
relearn/reinforce the long route. Finally, case 3 represent again an
environment with the unblocked short route which has to be re-
learned. This experiment shows the ability of the algorithm to
reroute (i.e., ‘relearn’) a route. We perform Experiment 6 twice.
First, agents have perfect goal-quality assessment. Second, agents
make goal-quality-assessment errors which result in false assess-
ment of goal quality. Despite of this handicap, the agents should
still be able to learn the shortest route towards the goal and gather
the goal-items efficiently. A goal contains 300 items.

Third, we use different settings for the three experiment sets.
a) In Set 1, due to BSP being simulated in a different simulator
which does not support all extensive measurements, we use the fol-
lowing settings. (i) every agent that starts dancing for a goal stays
committed to its goal and recruits itself (i.e., Pr = 1), (ii) the ex-
periments are run with a colony size of 25 and 50 agents, (iii) no
goal quality assessment errors are allowed (i.e., εi

n = 0).
b) In Set 2, we only experiment with SLF and set the probability to
let a dancer recruit oneself to 0.50 (i.e., Pr = 0.50). In experiments
without the SQ, we set QC + Qij = 1.
c) In Set 3, we test for adaptability and set the dancer’s self-recruitment
probability to 0.50 (i.e., Pr = 0.50). Note that no adaptability
means there is no dancer self-recruitment (i.e., Pr = 0) and the
initial dance strength is zero (i.e., γ = 0) and consequently adapt-
ability will be zero (i.e., A = 0).

Furthermore, in each of the experiments we use the following
settings. (i) There is no quality threshold (i.e., εt = 0), (ii) dance
strength decay is set to 15 (i.e., εd = 15), (iii) initial dance strength
is set to 300 (i.e., γ = 300) so that the maximal dance has a dura-
tion of 300/15 = 20 time steps, (iv) probability of carrier death is
set to 0.001 (i.e., Pd = 0.001), (v) the maximal levy flight is set to
15 steps (i.e., cells to travel over), and (vi) the tendency to explore
is set a low value (i.e., σ = 10). The latter setting is determined
empirically. Setting a high value for the exploration tendency re-
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Set 1 (Efficiency)

Algorithm (# agents) Experiment 1 Experiment 2
μ σ μ σ

BSP (25) 2173.8 14.5 5625.6 52.9
SLF (25) 1228.6 66.9 2028.2 152.2
BSP (50) 1160.6 4.8 2600.6 15.4
SLF (50) 725.9 36.2 1227.6 65.8

Set 1 (Scalability)

Algorithm (# agents) Experiment 1 Experiment 2
μ σ μ σ

BSP (25) 4.76 0.0 4.49 0.0
SLF (25) 18.3 12.2 27.0 17.0
BSP (50) 9.15 0.0 9.05 0.0
SLF (50) 44.1 20.5 64.3 32.6

Table 3: The efficiency (top) and scalability (bottom) of the two

algorithms under study in Set 1. Efficiency is measured in time

steps. Additionally, we indicate the exploration/exploitation ra-

tio for SLF. Scalability is measured in computation time per

time step. er indicates the exploration/exploitation ratio. Each

experiment contains a goal consisting of 300 items.

sults in degraded efficiency performance due to the low probability
of recruitment. To compensate for the inherent randomness in the
algorithms, we perform each experiment in every set 30 times. To
limit run-time, we set a maximal time-step limit of 12000 time steps
per experiment.

5. RESULTS
To have an indication of performance, we compare SLF’s perfor-

mance with BSP’s performance [16] when applied to the same ex-
periment set, i.e., Set 1. We compare the algorithms’ performance
with respect to their efficiency and scalability. Efficiency can be
measured by determining the number of time steps the algorithms
require to gather all the items present in the goal. Scalability relates
to the computation time required to perform this task. As can be
observed in the top section of Table 3, SLF outperforms BSP with
respect to efficiency. On average, SLF is 2 times faster in solving
the problem set. The time-step ratios with both increasing colony
size and increasing world size approximately stay equal. For ex-
ample, the time-step ratio for SLF with increasing colony size in
the two different-sized experiments are 725.9/1228.6 = 0.59 and
1227.6/2028.2 = 0.61 respectively. Thus, considering the effi-
ciency, both algorithms are equally scalable with increasing colony
size and world size. However, SLF needs more computation time
per time step as can be observed in the bottom section of Table 3.
On average SLF uses 6.9 times more computation time per time
step which in the end results in longer run times for SLF. The
computation-time ratios stay approximately equal with increasing
agent numbers. But SLF’s computation-time ratio becomes worse
with increasing world size while BSP’s computation-time ratio re-
mains approximately equal. This is due to the nature of the two
algorithms. BSP uses a binary inhibition pheromone. Either the
pheromone is there or it is not. In contrast, SLF needs to perform
some ‘administration’ efforts with respect to landmark strength.
The larger the world, the more possible landmarks, the more ‘ad-
ministration’ to be done. Obviously, SLF limits the amount of ‘ad-
ministration’ by selecting only key locations for landmarks. With
respect to an ACO algorithm [16], SLF may thus have a clear ad-
vantage since an ACO algorithm typically needs to perform ‘ad-
ministration’ for significantly more locations.

Set 2 presents experiments with multiple, different-quality goals.
The set is used to explore whether an extended heuristic (i.e., with
Quality Scaling) improves performance of SLF. The results, which

Set 2 (Efficiency & Scalability)

Algorithm Experiment 3 Experiment 4 Experiment 5
μ σ μ σ μ σ

Efficiency SLF 2993.3 311.0 4246.9 360.3 3737.0 272.8
Efficiency SLF (SQ) 2956.1 442.8 3196.7 216.8 3242.7 238.4
Scalability SLF 42.8 20.3 76.5 37.8 64.6 29.3
Scalability SLF (SQ) 54.6 25.0 59.4 24.6 58.7 23.2

Set 2 (Heuristic)

Algorithm Experiment 3 Experiment 4 Experiment 5
F1 (μ) F2 (μ) F1 (μ) F2 (μ) F1 (μ) F2 (μ)

SLF I (1300.9) II (2869.5) I (1085.5) II (4179.5) II (1443.5) I (3657.9)
SLF (SQ) I (1579.6) II (2792.8) I (1066.9) II (3126.5) II (1668.2) I (3191.9)

Table 4: The efficiency (top), scalability (top), and heuristic

(bottom) of the two algorithms under study in Set 2. Efficiency

is measured in time steps. Scalability is measured in compu-

tation time per time step. F1 and F2 represent the first and

second depleted goals respectively and are named as indicated

in Figure 5. μ indicates the average time step at which a given

goal is depleted. Each goal consists of 600 items.

Set 3 (Efficiency & Scalability)

Algorithm Experiment 6a Experiment 6b
μ σ μ σ

Efficiency SLF 4221.1 1101.3 4703.9 763.4
Scalability SLF 59.5 30.5 63.0 31.9

Set 3 (Adaptability)

Algorithm Experiment 6a Experiment 6b
Adaptability Adaptability

SLF 94% 93%

Table 5: The efficiency (top), scalability (top), and adaptability

(bottom) of SLF in Set 3. Efficiency is measured in time steps.

Scalability is measured in computation time per time step.

can be observed in Table 4, indicate that both heuristics perform
equally well in an experiment with equal quality goals and there
is no significant difference in performance (i.e., double-sided t-test
with 99% confidence; t = 0.3766 for efficiency, t = −2.0069 for
scalability). With respect to finding the best goal first, we cannot
observe any difference either (see bottom section of Table 4. How-
ever, SLF with Quality Scaling shows a higher overall efficiency
in experiments with different quality goals. Thus, the extended
heuristic shows an advantage over the standard heuristic. Qual-
ity Scaling scales a goal quality up when it’s the only goal being
‘advertised’ in the hive. Such a scaled goal quality ensures more
dancing for the goal and as a consequence more and prolonging
recruitment which in the end results in faster item return.

Table 5 shows the results for the dynamic experiments, i.e., Ex-
periment 6a and 6b. The former allows no agent quality assessment
errors whereas the latter does allow such errors. The results indi-
cate how robust and adaptive SLF is with respect to dynamics and
errors. From the results we can observe that SLF is robust to ob-
servation errors. Efficiency performance is only slightly lower. A
double-sided T-test with 99% confidence interval reveals the differ-
ence is not significant (t = −1.9735). Moreover, the adaptability
measure, as seen in the bottom section, indicates that adaptability is
robust to observation errors since the adaptability percentage only
decreases with 1%. Adaptability shows the ability of the algorithm
to adapt learned behavior to improve performance.

6. CONCLUSION AND FUTURE WORK
In this research, we presented a novel distributed landmark nav-

igation algorithm for a MAS. More precisely, the algorithm con-
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structs stigmergic landmark networks over which agents can travel
from and to a goal. In contrast to existing algorithms, we present
an online learning approach in which found landmarks can imme-
diately be used. Each landmark represents a segment of the total
route, ensuring robustness and accuracy by decreasing inherent ac-
cumulating PI errors.

Observing our results, we may conclude that SLF is significantly
more efficient than BSP. However, its computation time per time
step is approximately 7 times larger which in the end results in
longer run times for the experiments. Although SLF performs worse
with respect to computation time, it is worth noting that this may
not be a significant problem. For example, if SLF would be applied
in swarming robots, each robot itself may use significantly more
time than 100 ms to move from one location to another. Moreover,
in a physical swarming environment, the task is typically divided
over multiple independent components. This in contrast to the cur-
rent simulation in which the task was done by only one processor.
With respect to scalability we may conclude that both algorithms
are equally scalable. Furthermore, we may conclude that extending
the algorithm’s heuristic is advantageous. By doing so, the effi-
ciency of the algorithm increases. Finally, we may conclude that
SLF is robust to quality assessment errors. If the agents’s quality
assessment has errors, the performance of the algorithm does not
suffer from this.

In future, we would like to apply an algorithm as described in this
research to the problem domain of network routing. Foraging and
routing have a number of properties in common, such as, (i) finding
optimal routes, (ii) constructing robust routes, and (iii) load balanc-
ing. It might be interesting to see how an algorithm such as SLF
would perform in comparison to state-of-the-art (swarming) rout-
ing algorithms such as Dynamic Source Routing (DSR), Ad-hoc
On-demand Distance Vector Routing (AODV), and AntHocNet.
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